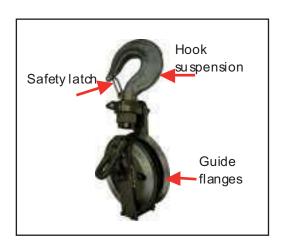
Snatch pulley with wire rope guide flanges

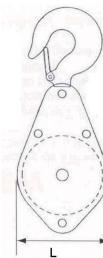

Description

Side opening pulley

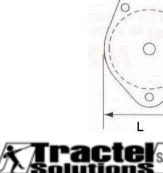
The flanges are designed to prevent wire rope slipping out of the groove when the lifting operation begins.

The pressed flanges are specially designed to resist against brutal shocks.

The pulleys are provided with a steel sheave with bronze bushing and a hook with safety latch



Dimensional characteristics


Reference	Gro up cod e	Roller bog*Ø/ outØ (mm)	wire-rope Ø . min/max	Flange width	Hook bowl to top	Overall thickness	WLL* (t)	weight in kg
		E/F		L	Н	K		
E162D	80729	140/160	10/11,5	197	342	87	1,25	5,2
E172D	80769	172/200	13/15	255	430	100	2	9,3

* Work Load Limit

FØ

dimensions in mm

www.tractelsolutions.com

ED

Snatch pulley with wire rope guide flanges

ref.:

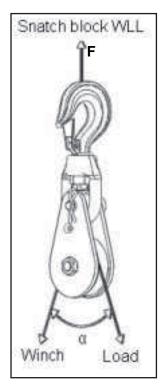
T6097 GB

rev.:

date: **May 09** page: 2/2

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating.


Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Always use suitable rope (size, length and capacity)
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the snatch block.
- Never use a block with a hook top anchor point without ensuring that the safety latch is correctly operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this application.
- The operator should never release the rope when a load is suspended or leave a suspended load unsupervised.
- Never install a Charlet return pulley as a hook block on lifting equipments (crane, hoist, ...).

Calculation of loading of a snatch blocks

The maximum Working Load Limit (WLL) written on the side of the block is the maximum load that should be exerted on the block and its connecting fitting.

This total load value F varies with the angle (α) between the incoming and departing lines to the block. The following table indicates the factor to be multiplied by the line pull to obtain the total load F on the block.

Angle α	Effort applied on suspension "F"
0°	winch WLL x 2
15°	winch WLL x 1,98
30°	winch WLL x 1,95
45°	winch WLL x 1,85
60°	winch WLL x 1,73
90°	winch WLL x 1,41
120°	winch WLL x 1
150°	winch WLL x 0,52
180°	winch WLL x 0

Always ensure:

F < pulley WLL

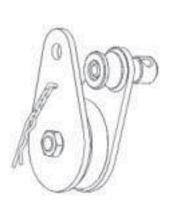
ETA/ETC/ETM

snatch blocks for wire rope heavy duty off-shore

ref.: T6054 GB

rev.: 4

date: June 06


page: 1/3

Applications

The snatch blocks of the ETA/ETC/ETM's range are mainly used for temporary applications for pulling and lifting, when quick assemblies and/or dismantlings are required. They can be suspended to a fixed or mobile anchorage point with the right strength corresponding to the required load. Thanks to an easy instalment, a light weight and attached locking parts, these snatch blocks are most often used on vessels and off-shore platforms.

ETM - snatch block with shackle

ETC – snatch block with hook

ETA - snatch block with axle

Description

The snatch blocks are available in 3 models with 3 different types of anchorage:

- ETC model with a hook with safety latch for a quick transfer,
- ETM model with a swivel shackle for an optimised and secured anchorage,
- ETA model with an axle suitable for tiny spaces.

The ETC and ETM models can easily be transformed in an axle model (ETA) by using standard tools. Once the snatch block is not under tension, the opening, operated by turning one bearing flange around the sheave axle, makes the introducing of the wire rope in the groove possible, while the block remains suspended. All the parts stay interdependent during the flange opening and the wire rope introduction.

The locking axle is secured by a safety pin which prevents any unscrewing or uncontrolled movement.

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating for capacities up to 8 tons. Above yellow painted in Ral 1004.
- The sheaves are fitted either on bronze bush or on ball or roller bearing (Please refer to the endosed table)
- Pressure axial lubrication on all the models, except the 2 tons model with a self lubricated bush.

ETA/ETC/ETM

snatch blocks for wire rope heavy duty off-shore ref.: **T6054 GB**

rev.: 4


page: 2/3

date: June 06

Dimensional characteristics

	sheav	re Ø	rope Ø		height				weig	ht			types	
WLL	F	E	С		I		0	D	,					
(1)	BOG Ø (2)	ETX Ø	min. max Ø	hoo k	shackle	axl e			hook/ shackle	pin	bearing	hoo k	shackle	pin
t	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg				
2	60	79	9/10	218	219	92	30	33	2.7	1.6	Bba(3)	ETC2-79E10	ETM2-79E10	ETA2-79E10
5	90	114	12/14	318	327	142	39	51	8	4.5	Bb(4)	ETC5-114E14	ETM5-114E14	ETA5-114E14
5	140	165	12/14	369	378	167	39	51	10.5	7	Bb	ETC5-165E14	ETM5-165E14	ETA5-165E14
8	112	142	17/19	397	400	182	48	58	15	8.5	Bb	ETC8-142E19	ETM8-142E19	ETA8-142E19
8	177	209	17/19	431	434	216	48	58	20	13.5	Bb	ETC8-209E19	ETM8-209E19	ETA8-209E19
8	221	262	17/19	457	460	245	48	58	25	18	Ro(5)	ETC8-262E19	ETM8-262E19	ETA8-262E19
8	275	326	20/23	495	498	283	48	58	29	23	Ro	ETC8-326E23	ETM8-326E23	ETA8-326E23
12.5	112	145	20/23	453	444	201	57	68	30	24	Bb	ETC12-145E23	ETM12-145E23	ETA12- 145E23
12.5	174	216	20/23	488	479	236	57	68	35	28	Ro	ETC12-216E23	ETM12-216E23	ETA12-216E23
12.5	174	216	26/29	497	488	245	57	68	35	28	Bb	ETC12-216E29	ETM12-216E29	ETA12-216E29
15	221	262	20/23	560	574	270	57	83	38	30	Ro	ETC15-262E23	ETM15-262E23	ETA15-262E23
15	275	326	20/23	592	607	302	57	83	45	36	Ro	ETC15-326E23	ETM15-326E23	ETA15-326E23
15	355	420	20/23	639	653	349	57	83	65	52	Ro	ETC15-420E23	ETM15-420E23	ETA15-420E23
20	174	216	26/29	553	576	260	44	89	39	31	Ro	ETC20-216E29	ETM20-216E29	ETA20-216E29
20	224	268	35/38	583	606	260	44	89	56	45	Ro	ETC20-268E38	ETM20-268E38	ETA20-268E38
20	349	410	35/38	653	676	360	44	89	70	56	Ro	ETC20-410E38	ETM20-410E38	ETA20-410E38
25	221	262	26/29	648	665	296	52	98	62	48	Ro	ETC25-262E29	ETM25-262E29	ETA25-262E29
25	270	326	26/29	680	697	628	52	98	85	63	Ro	ETC25-326E29	ETM25-326E29	ETA25-326E29
32	270	334	42/46	713	761	359	59	110	95	70	Ro	ETC32-334E46	ETM32-334E46	ETA32-334E46
32	443	518	42/46	805	853	451	59	110	135	100	Ro	ETC32-518E46	ETM32-518E46	ETA32-518E46

(1) Working Load Limit (2) Bottom Of Groove (3) self lubricated bush (4) bronze bush (5) ball or roller bearing

Subjected to technical modifications without notice - Non contractual document.

ETA/ETC/ETM

snatch blocks for wire rope heavy duty off-shore

ref.: **T6054 GB**

rev.: 4

date: June 06

page: 3/3

Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the axles. Threaded axle head should be visible after application of nuts.
- Never use a block with a hook as headfitting without ensuring that the safety latch is correctly
 operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this
 use.

Wire rope strength reduction

Pitch Ø (= BOG Ø + 1 wr Ø)

The ratio Wire rope Ø between the pitch diameter of the sheave and the wire rope diameter, called the winding ratio, alters the tensile strength in the wire rope as hereafter:

Winding ratio	Reduction
6	21%
8	17%
10	14%
15	11%
20	9%

Above values are given for information only, depending on the construction of the wire rope.

For more information, please ask your wire rope supplier.

Maximal effort applied on the headfitting of the block

The maximal effort applied on the suspension depends on the load and on the α angle formed between the fall of the load and the fall on which this effort is applied. The resultant value must be strictly lower to the working load limit of the block and the resistance of the anchorage point where the block is fitted.

Please refer to the table and sketch hereunder indicated:

α angle	Effort applied on the
	suspension
0°	Winch WLL x 2
15°	Winch WLL x 1.98
30°	Winch WLL x 1.95
45°	Winch WLL x 1.85
60°	Winch WLL x 1.73
90°	Winch WLL x 1.41
120°	Winch WLL x 1
150°	Winch WLL x 0.52
180°	0

Suspension effort

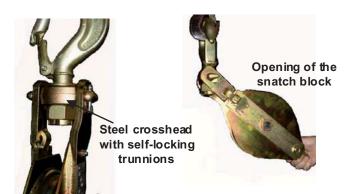
snatch blocks for wire rope cable

ref.: T6061 GB

rev.:

date: March 06

page: 1/3


Applications

The single sheave snatch blocks of the EH's range are mainly used for temporary applications for pulling and lifting, when quick assemblies and/or dismantlings are required. They can be suspended to a fixed or mobile anchorage point with the right strength corresponding to the required load.

Thanks to an easy instalment and availability of a becket, these snatch blocks are most often used for blocks assmblies or wire rope direction changes.

EH's snatch blocks are fitted with a swivel hook which ensure good positioning of the pulley regarding the cable.

The EH's range can be used with standard tirfor® and tirak® wire rope cable.

Becket

Description

A hook with safety latch is installed on the EH's snatch blocks model to ensure a quick and safe attachment.

Once the snatch block is not under tension, the opening, operated by turning 1/4 turn the snatch block body around the steel crosshead, makes the introducing of the wire rope in the groove possible, while the block remains suspended. All the parts stay interdependent during the flange opening and the wire rope introduction.

The locking axle is secured by a safety pin, which prevents from any unscrewing or uncontrolled movement.

Steel crosshead with self-locking trunnions avoids any opening of the loaded snatch block. This locking system is easy and efficient.

The becket permits a block sheaving 3 times.

Installation examples Traction block assembly Change of wire rope direction Lifting block assembly

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating.
- The sheaves are fitted either on bronze bush or on ball or roller bearing (Please refer to the endosed table)

Subjected to technical modifications without notice - Non contractual document

CHARLET

EΗ

snatch blocks for wire rope cable

ref.: **T 6061 GB**

rev.:

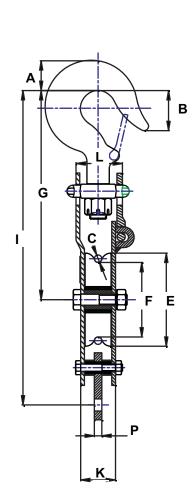
date: March 06

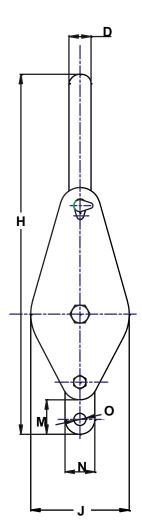
page: 2/3

Dimensional characteristics

				sheav	e Ø	Rope Ø														
ref.	group code	WLL*	bearing	F	Е	С	Α	В	D	G	н	1	J	K	L	М	N	0	Р	W eight
	code	(t)		Ø Bog**	Ø Ext	Ø min/max														(kg)
E303H	80869	1	Bb & Gr	80	100	8/9	33	43	24	225	386	355	106	38	50	37	32	13	8	3
E460H***	80969	1,6	Bb & Gr	132	160	7,5/ 8,3	41	59	30	315	541	482	170	58	77	56	40	17.5	16	7
E313H	80889	2	Bb & Gr	132	160	10/ 12	41	59	30	315	541	482	170	58	77	56	40	17.5	16	7
E323H	80909	3,2	Bb & Gr	160	200	13/ 15	49	60	38	369	631	562	210	80	94	53	40	17.5	16	15,5
E470H***	80989	3,2	Bb & Gr	160	200	10/ 11,5	49	60	38	369	631	562	210	80	94	53	40	17.5	16	15,5
E490H	81029	5	Bb & Gr	160	200	13/ 15	49	60	38	368	646	567	210	80	94	69	60	25	20	17
E333H	80929	5	Bb & Gr	210	250	16/ 18	49	60	38	405	719	640	260	88	94	62	60	25	20	20,2
E480H***	81009	6,4	Ro	275	336	14/ 16,3	68	80	48	510	896	794	343	92	110	75	70	30	25	34
E347H	80949	8	Ro	275	336	21/ 23	68	80	48	510	896	794	343	92	110	75	70	30	25	34

* Working Load Limit


** Bottom of Groove


*** for tirfor® rope

Dimensions in mm

 $Bb\ \&\ Gr$: bronze bush $\ \&\ axial$ lubrificator

Ro:roller bearing

Subjected to technical modifications without notice - Non contractual document

snatch blocks for wire rope cable

ref.: T6061 GB

rev.:

date: March 06

page: 3/3

Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the snatch block.
- Never use a block with a hook as headfitting without ensuring that the safety latch is correctly operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this
- When using a block sheaving 3 times, ensure that the block on which the becket is loaded is not over-loaded (see here after).

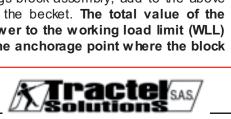
Wire rope strength reduction

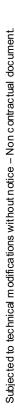
Pitch \emptyset (= BOG \emptyset + 1 w/r \emptyset)

between the pitch diameter of the sheave and the wire Wire rope Ø rope diameter, called the winding ratio, alters the tensile strength in the wire rope as hereafter:

Winding ratio	Reduction
6	21%
8	17%
10	14%
15	11%
20	9%

Above values are given for information only, up to the construction of the wire rope. For more information, please ask your wire rope supplier.


Maximal effort applied on the headfitting of the block


The maximal effort applied on the suspension is depending on the load and on the α angle formed between the fall of the load and the fall on which this effort is applied. The resultant value must be strictly lower to the working load limit (WLL) of the

block and the resistance of the anchorage point where the block is fitted.

Angle α	Suspension effort
0°	Winch WLL x 2
15°	Winch WLL x 1.98
30°	Winch WLL x 1.95
45°	Winch WLL x 1.85
60°	Winch WLL x 1.73
90°	Winch WLL x 1.41
120°	Winch WLL x 1
150°	Winch WLLx 0.52
180°	0

Important remark: In case on a 3 legs block assembly, add to the above calculated effort the load applied on the becket. The total value of the calculated effort must be strictly lower to the working load limit (WLL) of the block and the resistance of the anchorage point where the block is fitted.

Suspension effort

Becket's

Load

load

α

Winch

date:

page:

Applications

The swing blocks of EC type are mainly used for temporary applications for lifting or pulling. They can be suspended to a fixed or mobile anchorage point with the right strength corresponding to the required load. Thanks to an easy instalment and a light weight, this is the most current block used for repairing operations. These swing blocks are most often used as winch accessory on 4WD cars.

Description

The large holes in the bearing flanges offer several anchorage alternatives means of shackles, axles, chains, hooks, slings. The holes can also be used as handles for an easy transportation. Once the swing blocks are attached, locking the two flanges, the opening is impossible making the pulling or lifting operation in full security.

Technical characteristics

- Ultimate load 4 times the Working Load Limit (WLL).
- Zinc bichromated coating as finishing.
- The sheaves are fitted on tempered and cemented pins with a full covered lubricating nipple.

Dimensional characteristics

	WLL*	wire rop e Ø		wire rope Ø		outside Ø of the roller					weight	type
		mini	maxi	E	Н	K	Α	В		-		
	t	mm	mm	mm	mm	mm	mm	mm	kg			
	1.6	8	9	100	180	60	66	40	2.2	EC1.6-100E9		
I	3.2	10	12	160	260	80	86	50	4.8	EC3.2-160E12		
ſ	5	13	15	200	330	100	106	60	9.3	EC5-200E15		
ľ	8	16	18	250	410	120	138	80	19.4	EC8-250E18		

* Working Load Limit

Swing blocks for wire rope

date:

Non-conform uses

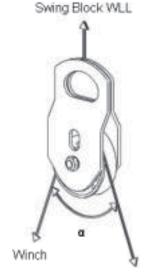
- DO NOT USE FOR PERSONNEL LIFTING.
- Strictly forbidden to either be under or walk under the load.
- Do not use as a lifting block (holes profile not suitable).
- Never use the block without priory checking:
 - parts correctly assembled,
 - excessive movement,
 - excessive wearing or corrosion,
 - deformation,
 - no weld corrosion or cracking,
 - free rotating sheave.
- Prior to using the block, check for proper position and locking of the axles. Threaded axle head should be visible after applications of nuts.

Wire rope strength reduction

Pitch Ø (= BOG Ø + 1 w/r Ø)

between the pitch diameter of the sheave and the wire rope The ratio Wire rope Ø diameter, called the winding ratio, alters the tensile strength in the wire rope as hereafter:

Winding ratio	Reduction
6	21%
8	17%
10	14%
15	11%
20	9%


Above values are given for information only, depending on the construction of the wire rope. For more information, please ask your wire rope supplier.

Maximal effort applied on the headfitting of the block

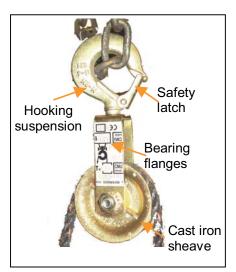
The maximal effort applied on the suspension must be strictly lower to the resistance of the anchorage point where the block is fitted. This suspension depends on the load and on the α angle formed between the fall of the load and the fall on which this effort is applied. The resultant value should never exceed the working load limit of the block.

Please refer to the table and sketch hereunder indicated:

α angle	Swing block WLL
0°	Winch WLL x 2
15°	Winch WLL x 1.98
30°	Winch WLL x 1.95
45°	Winch WLL x 1.85
60°	Winch WLL x 1.73
90°	Winch WLL x 1.41
120°	Winch WLL x1
150°	Winch WLL x 0.52
180°	Winch WLL x 0

Load

www.tractelsolutions.com


date: **Sept 07** page: 1/2

Applications

ES simple yoke pulleys are return pulleys for wire-rope dedicated to slow applications. They permit lifting or wire-rope deviation - without limit on use height or distance

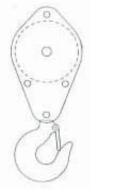
They can be suspended to a fixed or mobile anchorage point with the right strength corresponding to the required load.

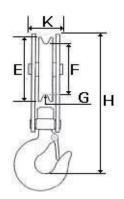
ES pulleys are fitted with a swivel hook which ensures good positioning of the pulley regarding the wire-rope.

Description

A hook with safety latch is installed on the ES pulleys to ensure a quick and safe attachment.

ES pulley is a non opening block: wire-rope is installed by pulling one of its end between bearing flanges. Important height of bearing flanges permits easy installation of the wire-rope and ensures space for splice.


The cast iron sheave is rotation free.


Dimensional characteristics

WLL* on suspension kg	WLL* on a leg	Wire-rope Ø		Sheave ext.	Bottom of groove	Groove Ø	Hook bowl to top	Overall width	Weight kg	Ref.	
3	kg	min	max	E	F	G	Н	K			
320	160	4	5	80	60	6	191	55	0,9	E110S	
630	315	8	9	100	80	8	236	65	1,8	E112S	
1200	600	10	11,5	160	132	12	320	76	3,4	E120S	

* Working Load Limit

Dimensions en mm

simple yoke pulley for wire-rope

ref.: T 6079 GB

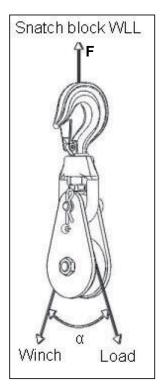
rev.:

page:

date: Sept 07 2/2

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating.


Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Always use suitable wire-rope (size, length and capacity)
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the snatch block.
- Never use a block with a hook as head fitting without ensuring that the safety latch is correctly operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this
- The operator is not authorised to release the wire-rope or leave equipments out of control when a load is hanged up on a pulley.
- Never install a Charlet return pulley as a hook block on lifting equipments (crane, hoist, ...).

Calculation of loading of a snatch blocks

The maximum Working Load Limit (WLL) written on the side of the block is the maximum load that should be exerted on the block and its connecting fitting.

This total load value F varies with the angle (α) between the incoming and departing lines to the block. The following table indicates the factor to be multiplied by the line pull to obtain the total load F on the block.

Angle α	Effort applied on suspension "F"
0°	winch WLL x 2
15°	winch WLL x 1,98
30°	winch WLL x 1,95
45°	winch WLL x 1,85
60°	winch WLL x 1,73
90°	winch WLL x 1,41
120°	winch WLL x 1
150°	winch WLL x 0,52
180°	winch WLL x 0

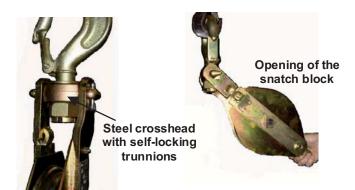
Always ensure:

F < pulley WLL

rev.:

date: April 08

1/3 page:


Applications

The single sheave snatch blocks of the EH's range are mainly used for temporary applications for pulling and lifting, when quick assemblies and/or dismantlings are required. They can be suspended to a fixed or mobile anchorage point with the right strength corresponding to the required load.

Thanks to an easy instalment and availability of a becket, these snatch blocks are most often used for blocks assmblies or wire rope direction changes.

EH's snatch blocks are fitted with a swivel hook which ensure good positioning of the pulley regarding the cable.

The EH's range can be used with standard tirfor® and tirak® wire rope cable.

Description

A hook with safety latch is installed on the EH's snatch blocks model to ensure a quick and safe attachment.

Once the snatch block is not under tension, the opening, operated by turning \(\frac{1}{4} \) turn the snatch block body around the steel crosshead, makes the introducing of the wire rope in the groove possible, while the block remains suspended. All the parts stay interdependent during the flange opening and the wire rope introduction.

The locking axle is secured by a safety pin, which prevents from any unscrewing or uncontrolled movement.

Steel crosshead with self-locking trunnions avoids any opening of the loaded snatch block. This locking system is easy and efficient.

The becket permits a block sheaving 3 times.

Installation examples Traction block assembly Change of wire rope direction Lifting block assembly

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating.
- The sheaves are fitted either on bronze bush or on ball or roller bearing (Please refer to the enclosed table)

EΗ

snatch blocks for wire rope cable

ref.: T 6061 GB

rev.:

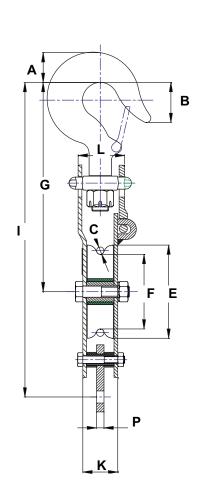
date: March 06

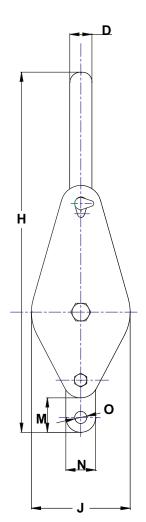
page: 2/3

Dimensional characteristics

					re Ø	Rope Ø														
ref.			bearing	F	Е	С	Α	В	D	G	н		J	K	L	М	N	0	Р	Weight
				Ø Bog**	Ø Ext	Ø min/max													(kg)	
E303H	80869	1	Bb & Gr	80	100	8/ 9	33	43	24	225	386	355	106	38	50	37	32	13	8	3
E460H***	80969	1,6	Bb & Gr	132	160	7,5/ 8,3	41	59	30	315	541	482	170	58	77	56	40	17.5	16	7
E313H	80889	2	Bb & Gr	132	160	10/ 12	41	59	30	315	541	482	170	58	77	56	40	17.5	16	7
E323H	80909	3,2	Bb & Gr	160	200	13/ 15	49	60	38	369	631	562	210	80	94	53	40	17.5	16	15,5
E470H***	80989	3,2	Bb & Gr	160	200	10/ 11,5	49	60	38	369	631	562	210	80	94	53	40	17.5	16	15,5
E490H	81029	5	Bb & Gr	160	200	13/ 15	49	60	38	368	646	567	210	80	94	69	60	25	20	17
E333H	80929	5	Bb & Gr	210	250	16/ 18	49	60	38	405	719	640	260	88	94	62	60	25	20	20,2
E480H***	81009	6,4	Ro	275	336	14/ 16,3	68	80	48	510	896	794	343	92	110	75	70	30	25	34
E347H	80949	8	Ro	275	336	21/ 23	68	80	48	510	896	794	343	92	110	75	70	30	25	34

* Working Load Limit


** Bottom of Groove


*** for tirfor® rope

Dimensions in mm

Bb & Gr : bronze bush & axial lubrificator

Ro : roller bearing

Tracte sas/

snatch blocks for wire rope cable

ref.:

page: 3/3

Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the snatch block.
- Never use a block with a hook as headfitting without ensuring that the safety latch is correctly operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this
 issue.
- When using a block sheaving 3 times, ensure that the block on which the becket is loaded is not over-loaded (see here after).

Wire rope strength reduction

Pitch \emptyset (= BOG \emptyset + 1 w/r \emptyset)

The ratio Wire rope Ø between the pitch diameter of the sheave and the wire rope diameter, called the winding ratio, alters the tensile strength in the wire rope as hereafter:

Winding ratio	Reduction
6	21%
8	17%
10	14%
15	11%
20	9%

Above values are given for information only, up to the construction of the wire rope.

For more information, please ask your wire rope supplier.

Maximal effort applied on the headfitting of the block

The maximal effort applied on the suspension is depending on the load and on the α angle formed between the fall of the load and the fall on which this effort is applied. The resultant value must be strictly lower to the working load limit (WLL) of the block and the resistance of the anchorage point where the block is fitted.

Angle α	Suspension effort
0°	Winch WLL x 2
15°	Winch WLL x 1.98
30°	Winch WLL x 1.95
45°	Winch WLL x 1.85
60°	Winch WLL x 1.73
90°	Winch WLL x 1.41
120°	Winch WLL x 1
150°	Winch WLLx 0.52
180°	0

Important remark: In case on a 3 legs block assembly, add to the above calculated effort the load applied on the becket. The total value of the calculated effort must be strictly lower to the working load limit (WLL) of the block and the resistance of the anchorage point where the block is fitted.

Suspension effort

Load

Becket's

load

α

Winch

ref.: **T6097 GB**

rev.:

date: May 09

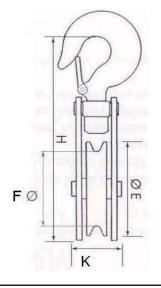
page: 1/2

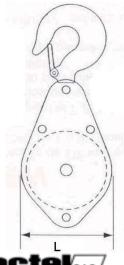
Description

Light duty pulley for wire rope

This pulley can be used as a return pulley with a wire rope and it is provided with a welded pressed steel sheave and a hook with safety catch.

Can be used at low rotation speed only




Dimensional characteristics

Reference	Group code	Roller bog*Ø/ outØ (mm)	wire- rope Ø	Flange width	Hook bowl to top	Overall thickness	WLL*	weight in kg
		E/F	min/m	L	Η	K		
E140G	80809	60/80	4/5	86	223	55	0,32	1,6
E144G	80829	80/100	8/9	106	293	59	0,63	2,5
E146G	80849	80/100	8/9	106	293	59	0,63	2,5

* Work Load Limit

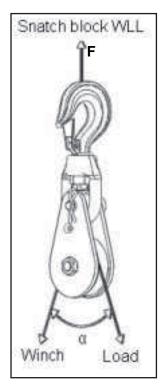
dimensions in mm

date: May 09

page: 2/2

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating.


Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Always use suitable rope (size, length and capacity)
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the snatch block.
- Never use a block with a hook as headfitting without ensuring that the safety latch is correctly operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this
 issue.
- The operator is not authorised to release the rope or leave equipments out of control when a load is hanged up on a pulley.
- Never install a Charlet return pulley as a hook block on lifting equipments (crane, hoist, ...).

Calculation of loading of a snatch blocks

The maximum Working Load Limit (WLL) written on the side of the block is the maximum load that should be exerted on the block and its connecting fitting.

This total load value F varies with the angle (α) between the incoming and departing lines to the block. The following table indicates the factor to be multiplied by the line pull to obtain the total load F on the block.

Angle α	Effort applied on suspension "F"
0°	winch WLL x 2
15°	winch WLL x 1,98
30°	winch WLL x 1,95
45°	winch WLL x 1,85
60°	winch WLL x 1,73
90°	winch WLL x 1,41
120°	winch WLL x 1
150°	winch WLL x 0,52
180°	winch WLL x 0

Always ensure:

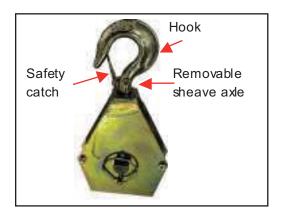
F < pulley WLL

date: May 09

page: 1/2

Description

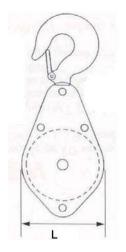
Medium duty pulley for wire rope

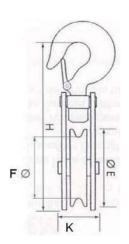

To be used as a return pulley.

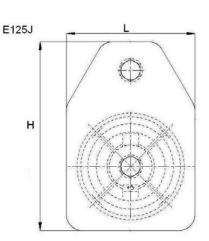
The sheave can be easily removed by taking off the safety pin and then the sheave axle (without tools)

These pulleys are provided with a welded pressed steel sheave and a hook with safety catch.

The E125J model does not have a hook and is specially designed for lifting concrete slabs with a cross-bar




Dimensional characteristics


Reference	Group code	Roller bog*Ø/ outØ (mm)	wire-rope Ø min/max	width	Hook bowl to top	Overall thickness	WLL*	weight in kg
		E/F	IIIIII/IIIax	L	Н	K		
E125J	81049	80/100	8/9	120	177	62,5	1	1,9
E126J	81059	80/100	8/9	130	241	64	0,63	2,6
E136J	81099	132/160	10/11,5	199	345	70	1,25	5

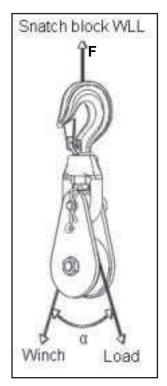
* Work Load Limit

dimensions in mm

Pulley for wire rope

Technical characteristics

- Ultimate load is 4 times the working load limit (WLL).
- Zinc bichromated coating.


Non-conform uses

- NEVER USE FOR PERSONNEL LIFTING.
- Always use suitable rope (size, length and capacity)
- Strictly forbidden to either be under or to walk under the load.
- The block should be regularly inspected (priory checking: parts correctly assembled, no excessive movement, no excessive wearing or corrosion, no deformation, no weld corrosion or cracking, free rotating sheave).
- Prior to using the block, check for proper position and locking of the snatch block.
- Never use a block with a hook as top anchor point without ensuring that the safety latch is correctly operated and free from deformation.
- For lifting operations, the user must refer to the safety rules and regulations applicable to this
- The operator should never release the rope when a load is suspended or leave a suspended load unsupervised.
- Never install a Charlet return pulley as a hook block on lifting equipments (crane, hoist, ...).

Calculation of loading of a snatch blocks

The maximum Working Load Limit (WLL) written on the side of the block is the maximum load that should be exerted on the block and its connecting fitting.

This total load value F varies with the angle (α) between the incoming and departing lines to the block. The following table indicates the factor to be multiplied by the line pull to obtain the total load F on the block.

Angle α	Effort applied on suspension "F"
0°	winch WLL x 2
15°	winch WLL x 1,98
30°	winch WLL x 1,95
45°	winch WLL x 1,85
60°	winch WLL x 1,73
90°	winch WLL x 1,41
120°	winch WLL x 1
150°	winch WLL x 0,52
180°	winch WLL x 0

Always ensure:

F < pulley WLL

